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A flow-Mach-number-induced hysteresis phenomenon, in the shock-on-shock
interaction of conical shock waves, is investigated numerically, by solving the Euler
equations, using a W-modification of the non-stationary Godunov method with
second-order accuracy both in space and time. The investigation reveals a multi-path
hysteresis loop. It is shown that there are flow Mach number ranges in which three
different wave configurations can be obtained for identical flow conditions. This
study complements an earlier study by Ben-Dor et al. (2001) in which an angle-of-
incidence-induced hysteresis was investigated both numerically and experimentally
over a similar geometry. Based on the experimental findings of Ben-Dor et al.’s (2001)
study, it is hypothesized that, in fact, four different wave configurations, three inviscid
and one viscous, can be obtained for identical flow conditions. Since the geometry
under investigation resembles supersonic intakes, this finding is relevant to their
performance in supersonic/hypersonic flight.

1. Introduction
The reflection of oblique shock waves in steady flows (see e.g. Ben-Dor 1991,

chap. 3) could result in two general types of wave configurations: a regular reflection
(RR) and a Mach reflection (MR). Von Neumann (1945) suggested two extreme
criteria for the RR ↔ MR transition, which were later termed the detachment and
the von Neumann criteria. The two transition lines, arising from these two criteria,
divide the (M0, φ0)-plane, where M0 is the incident flow Mach number and φ0 is the
angle of incidence, into three different domains: a domain inside which only RR
wave configurations are theoretically possible, a domain inside which only MR wave
configurations are theoretically possible, and an intermediate domain, that is known
as the dual-solution domain, inside which both RR and MR wave configurations are
theoretically possible. The existence of a dual-solution domain led Hornung, Oertel &
Sandeman (1979) to hypothesize that a hysteresis process could exist in the RR ↔ MR
transition process. Chpoun et al. (1995) and Li, Chpoun & Ben-Dor (1999) recorded
experimentally hysteresis processes in the reflection of two-dimensional symmetric and
asymmetric shock waves, respectively. Fomin et al. (1996), Skews (1997, 1998) and
Ivanov et al. (1998a, b) showed that the above-mentioned experimental results were
contaminated by three-dimensional edge effects and therefore could not be considered
as purely two-dimensional. Skews (2000) showed that three-dimensional edge effects
are evident in wave configurations associated with the reflection of plane shock waves
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Figure 1. Schematic illustration of the geometrical set-up used in the present numerical study.
An incident conical converging shock wave is generated using a conical ring with a sharp
leading edge. This shock wave then interacts with a diverging conical curvilinear shock wave,
which is generated by a curvilinear cone.
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Figure 2. Schematic illustration of the two wave configurations, which were obtained in
the present study. (a) An overall regular reflection (oRR) wave configuration. The wave
configuration consists of an incident converging conical shock wave, i1, generated by the
conical ring, a head diverging conical shock wave, i2, generated by the curvilinear cone, and
two refracted shock waves, r1 and r2. (b) An overall Mach reflection (oMR) wave configuration.
The wave configuration consists of two Mach reflection wave configurations, which share a
common Mach stem, m.

over plane wedges. The above studies regarding the three-dimensional effects raised
doubts whether the hysteresis process is possible in two-dimensional flows. For this
reason Ben-Dor et al. (2001) designed an experimental set-up aimed at answering the
question of whether a hysteresis in the RR ↔ MR transition could exist in a flow field
which is free of three-dimensional edge effects.

The geometrical set-up fulfilling this requirement is shown schematically in figure 1.
An incident converging conical shock wave, i1 was generated using a conical ring
with a sharp leading edge of angle, θ . This incident converging conical shock wave
interacted with a diverging curvilinear conical shock wave, i2, which was generated
by a curvilinear cone. Based on Ben-Dor et al.’s (2001) study, depending on the
angle of interaction between these two conical shock waves, the resulting overall
wave configuration could be either an overall regular reflection (oRR) or an overall
Mach reflection (oMR). Schematic illustrations of both an oRR and an oMR wave
configuration are shown in figures 2(a) and 2(b), respectively.

The angle of interaction between these two conical shock waves could, in principle,
be altered either by (i) keeping the oncoming flow Mach number constant and
changing the horizontal distance between the conical ring and the curvilinear cone
or (ii) keeping the geometrical set-up fixed and changing the oncoming flow Mach
number.
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Figure 3. The numerically obtained angle-of-incidence-induced overall hysteresis loop. It
consists of two types of hysteresis loops: one major one, SNOPRS, and four minor ones,
BCDWB, EFGVE, HIJUH and KLMTK. Hm is the length of the Mach stem, i.e. the distance
between the two triple points in the case of an oMR, and X = S/L is the non-dimensional
distance of the nose of the curvilinear cone from the entrance cross-section of the conical ring
(S and L are shown in figure 1).

Ben-Dor et al. (2001) investigated, both experimentally and numerically, option
(i) of altering the angle of interaction between the two conical shock waves, namely
changing the geometrical set-up while keeping the oncoming flow Mach number
constant. By continuously moving the curvilinear cone along the axis of symmetry the
angle of interaction between the two conical shock waves was altered and as a result
both the oRR → oMR and the oMR → oRR transitions were observed and recorded.
Ben-Dor et al. (2001) experimentally discovered a double-loop hysteresis consisting
of one which was found to be viscous dependent, and another non-viscous dependent
one which was associated with the existence of the previously-mentioned dual-solution
domain. The experimental results clearly indicated that a hysteresis existed in a flow
field that was free of three-dimensional edge effects. Not surprisingly, Ben-Dor et al.
(2001) failed to detect the viscous-dependent hysteresis loop in their numerical Euler
calculations, but did succeed in obtaining the non-viscous-dependent hysteresis loop.
In addition, multiple minor hysteresis loops, associated with the interaction between
the overall shock wave configuration and the rear edge (base) of the curvilinear cone,
were also observed. While the non-viscous major hysteresis loop, which arose from the
existence of a dual-solution domain, involved different overall wave configurations,
i.e. oRR or oMR, the multiple minor hysteresis loops consisted of only oMR
wave configurations with different flow patterns. The above-mentioned viscous-
dependent hysteresis loop was obtained numerically by Burstchell et al. (2001) in their
Navier–Stokes simulations.

The overall numerical hysteresis loop is shown in figure 3. Note that based on the
experimental results of Ben-Dor et al. (2001) the viscous-dependent hysteresis loop
overlapped the major hysteresis loop. Hence, it was indicated by Ben-Dor et al. (2001)
that there were geometrical set-ups for which three different, two inviscid and one
viscous, shock wave reflection configurations were possible.
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Figure 4. A typical wave configuration (isopycnics), which results from the interaction of a
supersonic flow, having a flow Mach number M0 = 5.5, with the investigated geometrical set-up.
The principal feature of the developed flow is the formation of two conical shock waves: the
incident shock wave, which is formed as a result of the interaction of the supersonic flow with
the conical ring, and the head shock wave, which is formed as a result of the interaction of
the supersonic flow with the curvilinear cone. The incident shock wave interacts with the head
shock wave to give the overall wave configuration, which can be either an oRR (as shown in
figure 2a and in this figure) or an oMR (as shown in figure 2b).

The option (ii) of altering the angle of interaction between the two conical shock
waves, namely keeping the geometrical set-up fixed and changing the oncoming flow
Mach number is the focus of the present study.

It should be noted here that while option (i) is relatively easy to investigate
experimentally, it is very difficult to investigate experimentally option (ii), which is
numerically investigated in the present study, since wind tunnels in which the flow
Mach number can be altered in the test section, are not readily available. For this
reason, while case (i) has been investigated both experimentally and numerically, the
present case (ii) has been investigated only numerically. As the hysteresis processes
are induced in different ways a new numerical code had to be written. In addition, it
is important to note that since the geometry under investigation resembles supersonic
intakes, the present investigation, as will be shown subsequently, is relevant to the
performance of intakes at supersonic/hypersonic flights.

2. The geometrical set-up
The geometrical set-up that was used for the present investigation is shown in

figure 1. It is identical to the one that was used by Ben-Dor et al. (2001). The
choice of an identical geometrical set-up was made for convenience, i.e. it was already
programmed. A 70 mm diameter and 28 mm wide conical ring was placed in a super-
sonic flow. The shape of the curvilinear cone was y(x) = 0.000115x3 + 0.002717x2 +
0.08749x (x and y are in mm). The base diameter and the length (height) of the
curvilinear cone were 30.4 mm and 40 mm, respectively. The head angle of the conical
ring was θ =10◦. The location of the curvilinear cone with respect to the conical ring
was kept constant. The non-dimensional distance of the nose of the curvilinear cone
from the entrance cross-section of the conical ring is defined as X = S/L where S and
L are shown in figure 1, L being the width of the conical ring.

A typical calculation of the resulting flow field, for X = −0.3 and M0 = 5.5, is shown
in figure 4. As mentioned earlier, the principal feature of the developed flow is the
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formation of two conical shock waves. The one which is formed as a result of the inter-
action of the supersonic flow with the conical ring will be referred to as the incident
shock wave and the other, which is formed as a result of the interaction of the
supersonic flow with the curvilinear cone, will be referred to as the head shock wave
of the cone. The incident shock wave interacts with the head shock wave in a manner
that is known in the literature as a shock-on-shock interaction. Due to the curvature
of the surface of the curvilinear cone the head shock wave is also curvilinear. However,
owing to its interaction with the expansion fan emanating from the rear edge of the
curvilinear cone (point C in figure 4), the head shock wave has an inflection point and
it changes its curvature. The angle ϕ between the incident and the head shock waves
depends on the location of the interaction point. If the interaction point is located
downstream of the inflection point of the head shock wave (as is the case shown in
figure 4) then the angle ϕ is small and the resulting overall wave configuration is an
overall regular reflection (oRR). When the oncoming free-stream Mach number, M0,
is decreased the angle of the incidence of the shock wave increases, and the location
of the intersection of the shock waves shifts upstream along the head shock wave.
This, in turn, results in a considerable increase of the angle of interaction between
the incident and the head shock waves, which could cause a transition to an overall
Mach reflection (oMR).

3. The numerical method
The problem under consideration was solved using an Eulerian code for an ideal

gas with γ = 1.4. The stationary solutions were determined numerically using a W-
modification of the non-stationary Godunov method with second-order accuracy both
in space and time. A detailed description of the W-modification of the non-stationary
Godunov method can be found in Vasiliev (1996). General details of the code can be
found in Ben-Dor et al. (1999).

The boundary conditions for these inviscid flows are straightforward. Because the
free stream is supersonic the incoming flow conditions are specified, and the grid is
chosen in such a way that the outgoing flow is also supersonic. Thus, a simple zeroth-
order extrapolation of the variables at the outflow is appropriate. Along the cone
and nozzle surfaces, both the normal velocity component and the normal pressure
gradient are forced to be zero.

Godunov’s method (as well as all the other methods which employ the solution of
the Riemann problem) is very well suited to tracking shock wave fronts. Consequently,
a procedure for tracking the Mach stem (if an oMR wave configuration was formed)
was applied in the course of the present numerical calculations. This procedure
transformed the mesh during the calculations in such a manner that part of one of
the vertical boundary lines of the mesh coincided with the Mach stem. The remaining
tracking lines were extended up to the boundaries of the channel as straight lines. As
a result of tracking the Mach stem the vertical boundary lines of the mesh became
curvilinear. The numerical details of the procedure for tracking the shock wave front,
i.e. transformation of the numerical mesh in such a manner that part of one of the
vertical boundary lines of the mesh would coincide with the Mach stem, are described
in Vasiliev & Kraiko (1999).

The flow Mach number was varied continuously in the range 2.6 � M0 � 5.0 with
increment of �M = 0.05. The procedure for varying the flow Mach number, M0(t),
during the calculations for the same variant is shown by the left vertical axis of
figure 5. The overall time for varying the flow Mach number was composed of
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Figure 5. The procedure of varying the flow Mach number M0(t) during the calculations.
Dstem (dashed line) is the non-dimensional velocity of the middle point of the Mach stem.
Curve 2 is the result using equations (2).

two intervals: a transitional time, �ttrans, and an interval, �ttotal, which was the time
taken for the stationary solution to reach a situation for which M0(t) = const. The
values of these time intervals were established, based on our preliminary calculations,
respectively, as

�ttrans = 0.6
L

a0

, �ttotal = 4
L

a0

. (1)

In (1) a0 is the speed of sound of the free stream. (Note that in figure 5 and in the
following the dimensionless time L/a0, is used). The main criterion for determining
whether a stationary solution has been reached was the stabilization of the Mach stem
(in the cases when the resulting wave configuration was an oMR). It was assumed
that a stationary solution was reached if the non-dimensional velocity of the middle
point of the Mach stem, Dstem, fulfilled, during a pre-determined time interval, the
condition Dstem = Vstem/a0 � 0.0002, where Vstem is the velocity of the middle point
of the Mach stem. (Note that in the following the dimensionless velocity (non-
dimensionalized by a0) is used.) If at the end of the overall time interval allocated
for the stationary solution to be reached, the above-mentioned condition was not
satisfied the calculations were allowed to continue. The overall time interval allocated
in the calculations with an oRR was sufficient to within a factor of 0.5.

The main role of a transitional time interval with a smooth M0(t) is to prevent
large transient disturbances in the flow field from delaying the steady flow formation
or provoking an untimely transition from one wave configuration to another. For
the same purpose, i.e. for the suppression of the transient disturbances, it is possible
to use a change of parameters not only in time, but also in space. For example to
change M0(t) it is possible to:

(a) change the flow parameters only at the inflow face;
(b) change the flow parameters in the entire uniform flow ahead of the shock

waves;
(c) modify the non-uniform flow behind the shock waves.
It is clear that case (a) is not optimal, since it includes a time delay which is needed

for the changes of the parameters to reach the position of the shock waves.
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The dashed line in figure 5 represents the time variation of the dimensionless
velocity of the front of the Mach stem, Dstem, when the generation of the changes
takes place at the inflow face, i.e. case (a). One can see that the time delay in
the response of the front of the Mach stem to the changes in the incident flow is
approximately 0.4. The oscillatory nature of the damping of the front velocity of the
Mach stem, and therefore of all the flow properties, can also be seen in figure 5. Note
that the required criterion for reaching a stationary condition Dstem � 0.0002 by t =4
was not met in the case shown in figure 5.

An adaptive mesh of 360 × 180 was employed in the calculations. The mesh was
refined in the region where the interaction took place and in the direction of the rear
edge of the cone (point C in figure 4). All the other details of the numerical procedure
are identical to those used in our previous study (Ben-Dor et al. 2001).

The correction of the parameters of the flow field at the transient stage of the
variation of the flow Mach number was performed using the Rankine–Hugoniot
relations for strong shock waves (with λ=1) but implemented with λ= 0.5:

p(t + τ ) = p(t) + 2λ(p(t) − p0)
M(t + τ ) − M(t)

M(t)
,

ρ(t + τ ) = ρ(t) + λ(ρ(t) − ρ0)
2 (γ + 1)

ρ0M2

M(t + τ ) − M(t)

M(t)
,

q(t + τ ) = q(t)
ρ(t)

ρ(t + τ )

M(t + τ )

M(t)
,




(2)

where τ is the magnitude of the time step. This procedure allowed us to change only
the upstream velocity and keep the density and the pressure constant. The efficiency
of this approach is demonstrated in figure 5 where the solid lines show the results
obtained using equations (2). In this case the maximum of the velocity amplitude is
lower, but the main advantage is that the damping of the oscillations after a transient
stage (when equations (2) are not yet applied) occurs faster. Here the criterion for
attaining a stationary flow was achieved at a time equal to 3.8. The application of
this procedure enabled us to reduce the computational time at the transient stage by
25–30% . If at the end of a stabilization interval the criterion was not satisfied, only
this case needed to be calculated further since prior to the beginning of each transient
stage all the parameters of the flow field were stored in a separate file.

4. The numerical results
Three cases were investigated in the present numerical study. They differed in the

location of the curvilinear cone with respect to the conical ring, i.e. in the value of X.
The three values of X that were investigated were −0.3, −0.2 and −0.1. (The minus
sign means that the nose of the curvilinear cone was located upstream of the entrance
cross-section of the conical ring as is shown in figure 4 where 0 indicates the location
of the entrance cross-section of the conical ring). The numerical results of these three
simulations are presented in the following.

4.1. Case 1: X = −0.3

The dependence of the Mach stem length, Hm, i.e. the distance between the two
triple points of an oMR, on the free-stream flow Mach number, M0, when the latter
was changed from 4.8 → 2.6 → 4.8 is shown in figure 6. Note that Hm = 0 when the
resulting wave configuration is an oRR.
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Figure 6. The dependence of the Mach stem length on the free-stream-flow Mach number
when it was changed from 4.8 → 2.6 → 4.8 for X = −0.3. The two wave configurations of
loop A that are appropriate to M0 = 4 are shown in figures 7(a) and 7(b), and the two wave
configurations of loop B that are appropriate to M0 = 3.5 are shown in figures 7(c) and 7(d).

As is evident in figure 6, an oRR interaction between the two shock waves takes
place during the variation of the flow Mach number from 4.8 to 3.8. A sudden
transition from an oRR to an oMR occurs at M0 = 3.65. Further reduction of M0

is associated with a gradual increase in the length of the Mach stem. This trend
continues until M0 = 3.15 where a sudden sharp increase of the Mach stem length
is observed. This transition is caused by the intersection of the reflected shock wave
of the lower Mach reflection with the rear edge of the curvilinear cone. Had the
curvilinear cone had a different geometry this transition would have most likely taken
place at a different value of M0. When the direction of changing the flow Mach
number is reversed and it is increased the reversed transitions occur at different
values of M0. Consequently, two hysteresis loops, A and B, are observed. While loop
A involves both oRR and oMR wave configurations, loop B involves only oMR
wave configurations, which are associated with different lengths of the Mach stems
and, as a result, different overall flow patterns.

The wave configurations associated with the hysteresis loops A and B are shown
in figures 7(a, b) and 7(c, d), respectively. The computer-generated frames illustrate
constant density contours, i.e. isopicnics, for the flow Mach numbers, M0 = 4.0 and
3.5. These wave configurations correspond to the open circles along the hysteresis
loop in figure 6. The important role of the rear edge of the curvilinear cone (point C
in figure 4) in the formation of the hysteresis loop B is clearly seen in figure 7(c, d). It
is hypothesized here that had the curvilinear cone had a different shape a multiplicity
of hysteresis loops would still be obtained but at different values of the flow Mach
number. (A further discussion regarding this matter appears in the conclusions.)

Note, in figure 6, the sudden increase in the length of the Mach stem when the
reflected shock wave of the lower Mach reflection reaches the rear edge of the curvi-
linear cone, as the flow Mach number is reduced from 3.2 to 3.1. Had the curvilinear
cone had a different geometry this transition would have taken place at a different
value of M0. It is also interesting to note that loop B is very similar to one of the
hysteresis loops which were numerically discovered in our previous study (see figure 8
in Ben-Dor et al. 2001).
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Figure 7. The dual wave configurations associated with the hysteresis loop A for M0 = 4.0,
(a) and (b), and the hysteresis loop B M0 = 3.5, (c) and (d) of figure 6.
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Figure 8. The dependence of the Mach stem length on the free-stream-flow Mach number
when it was changed from 4.8 → 2.6 → 4.8 for X = −0.2. The three wave configurations of
loops A and B that are appropriate to M0 = 3.8 are shown in figures 9(a), 9(b) and 9(c).

4.2. Case 2: X = −0.2

Similar calculations to those presented for case 1 are presented for this case in figures 8
and 9. In this case the curvilinear cone was located slightly downstream of its location
in case 1. The dependence of the Mach stem length on the free-stream-flow Mach
number when the latter was changed from 4.8 → 2.6 → 4.8 is shown in figure 8. It is
evident from figure 8 that the change in the location of the curvilinear cone resulted
in a significant increase of the range of the hysteresis loop A. As a result, unlike
the previous case, now the hysteresis loops A and B overlap. This in turn results in
a situation in which there is a flow Mach number range for which three stationary
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Figure 9. Three different wave configurations at M0 = 3.8 associated with the hysteresis
loop A, (a) and (b), and the hysteresis loop B, (c) and (d), of figure 8.

wave configurations, one oRR and two oMRs, are possible. Three such different wave
configurations, for M0 = 3.8, are shown in figure 9, in which the wave configurations
(a, b) and (c, d) that are associated with the hysteresis loops A and B are presented,
respectively. These wave configurations correspond to the open circles in figure 8.
The important role of the rear edge of the curvilinear cone (point C in figure 4) in
the formation of the hysteresis loop B is again clearly seen in figure 9.

It should be noted here that these three possible wave configurations are all derived
from the solution of the Euler equations. Hence, they are all inviscid. Recalling that
Ben-Dor et al. (2001) also obtained experimentally a viscous wave configuration,
which is also possible for the geometrical configuration that is investigated here,
means that a unique situation in which four different wave configurations, three
inviscid and one viscous, are, in fact, possible for the same flow conditions. To the
best of our knowledge, a situation in which four different wave configurations are
possible for the same flow conditions has never been reported before.

4.3. The pressure distributions for cases 1 and 2.

As mentioned earlier, the hysteresis loop B (see figure 8) involves two different oMR
wave configurations, one having a longer Mach stem than the other. The pressure
distributions along the curvilinear cone for these two different oMRs, for M0 = 3.5, are
shown in figure 10(a). The respective wave configurations are shown in figures 7(c) and
7(d). It is clearly evident from figure 10(a) that the different oMR wave configurations
are associated with pressure distributions which significantly differ from each other.
While the pressure profile associated with the oMR having the shorter Mach stem is
seen to gradually increase to a value about 10 times larger than the ambient pressure,
the pressure profile associated with the oMR having the longer Mach stem has a
pressure peak which is more than 40 times larger than the ambient pressure. An
inspection of the corresponding wave configurations in figure 7(c, d) clearly explains
this difference. The Mach stem of the oMR having the longer Mach stem is positioned
further upstream than that having the shorter Mach stem. As a result the reflected
shock wave of the lower Mach reflection hits the cone surface and reflects from it as
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Figure 10. The pressure distribution along the cone surface for (a) M0 = 3.5 (loop B of
figure 8), and (b) for M0 = 3.7 (loops A and B of figure 8). The distance is measured from
the nose of the cone. Solid line – oMR wave configuration having a long Mach stem;
dash-dotted line – oMR wave configuration having a short Mach stem; dashed line – oRR
wave configuration.

a regular reflection, RR. This RR is the reason for the pressure peak that is seen in
figure 10(a).

Owing to the absence of this RR in the oMR wave configurations of the hysteresis
loop A (see figure 7(a, b) no visible difference was found in the pressure distributions
of the oRR and the oMR wave configurations associated with this hysteresis loop.

The pressure distributions along the curvilinear cone for M0 = 3.7 for which the
hysteresis loops A and B overlap and hence three wave configurations (an oRR, an
oMR with a short Mach stem and an oMR with a long Mach stem) are possible,
are shown in figure 10(b). While the pressure distributions for the cases of the oRR
and the oMR having the short Mach stem (see figure 9a, b) are quite similar, both
are seen to gradually increase to a value slightly larger than 10 times the ambient
pressure, the pressure distribution for the oMR having the longer Mach stem (see
figure 9c) is again seen to have a sharp peak which reaches a value that is almost
50 times larger than the ambient pressure. The reason is again the reflection of the
reflected shock wave of the lower Mach reflection from the cone surface for the case
of an oMR having a long Mach stem.

4.4. Case 3: X = −0.1

The results of the numerical calculation are shown in figures 11 to 13. In this case
the curvilinear cone is located slightly downstream of its location in case 2. The
dependence of the Mach stem length on the free-stream-flow Mach number when the
latter was changed from 5.0 → 2.6 → 5.0 is shown in figure 11.

It is evident from figure 11 that the change in the location of the curvilinear
cone resulted in a further significant increase of the range of the hysteresis loop A.
Furthermore, unlike the previous two cases, now there are three hysteresis loops:
the previously obtained loops A and B and a small additional loop, loop C. During
the calculation of this hysteresis loop the increment of the Mach number �M0 was
reduced by a factor 2, i.e. �M0 = 0.025. Similarly to the previous case here again the
hysteresis loops overlap. There is an overlap of loops A and C, and an overlap of
loops A and B. Consequently, once again based on the inviscid numerical simulation,
three different wave configurations for identical flow conditions (flow Mach number
and geometry), are possible. The wave configurations associated with the hysteresis
loop A are shown in figure 12 and the wave configurations that correspond to the
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Figure 11. The dependence of the Mach stem length on the free-stream-flow Mach number
when it was changed from 5.0 → 2.6 → 5.0 for X = −0.1. The two wave configurations of loop
A that are appropriate to M0 = 4 are shown in figures 12(b) and 12(d), and the two wave
configurations of loop C that are appropriate to M0 = 3.45 are shown in figures 13(c) and
13(d).

hysteresis loops B and C are shown in figure 13. The important role of the rear edge
of the curvilinear cone in the formation of the hysteresis loops B and C is clearly
seen, once again, in figure 12.

The earlier note regarding the possible existence of a fourth, viscous dominated,
wave configuration for the same flow conditions, holds also in this case.

Figures 14(a) and 14(b) represent the pressure distributions for M0 = 3.45 for which
loops A and C overlap, and M0 = 4.0, for which loops A and B overlap. Three
different wave configurations – an oRR, an oMR having a short Mach stem and an
oMR having a longer Mach stem – are possible for each of these two flow Mach
numbers (see the open circles in figure 11). Unlike the previous cases, now the pres-
sure distribution associated with the oMR having the longer Mach stem has two
pressure peaks. While the first peak is about 37 times higher than the ambient
pressure the second peak is about 24 times higher than the ambient pressure. The
reason for the double-peak pressure profile is clearly understood when the actual
wave configuration, that is shown in figure 13(c), is examined. The first peak is due
to the reflection of the reflected shock wave of the lower Mach reflection from the
cone surface, which unlike in the previous case now reflects as a Mach reflection,
MR, rather then as a regular reflection, RR. The second peak arises from the strong
compression near the shoulder of the curvilinear cone, where a hump in the contact
discontinuity is seen to develop over the cone surface. The pressure enhancement at
the edges of such a hump has been addressed in our previous study (Ben-Dor et al.
2001).

The pressure distribution associated with the oRR is again seen to gradually
increase to a value that is about 10 times larger than the ambient pressure. Unlike
the previous cases (see figure 10) where the pressure distributions of the oMR having
the shorter Mach stem were seen to gradually increase to values of about 10 times
higher than the ambient pressure, now the pressure distribution of the oMR having
the shorter Mach stem also has a pressure peak which is almost 40 times the ambient
pressure. The reason for this behaviour is self-explanatory in view of the forgoing
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(a) M0 = 5.0

(b) M0 = 4.6

(b) M0 = 4.0

(b) M0 = 3.4

(d ) M0 = 4.6

(d ) M0 = 4.0

(d ) M0 = 3.4

(c) M0 = 3.2

Figure 12. The wave configurations of the hysteresis loop A (a → b → c → d → a)
of figure 11.

explanations and an inspection of the actual wave configuration that is shown in
figure 13(d .)

At M0 = 4.0 (see figure 14b) pressure distributions similar to those shown in figure 10
are again obtained. While the pressure distribution for the oMR having the longer
Mach stem has a pressure peak which is more than 48 times larger than the ambient
pressure, the pressure distributions of both the oMR having the shorter Mach stem
and the oRR are again seen to be very similar. They both gradually increase to values
slightly larger than 12 times the ambient pressure.

It is evident from the foregoing presentation and discussion regarding the pressure
distributions associated with the various wave configurations (see figures 10 and 14)
that the pressure distributions of oMR wave configurations having Mach stems which
are about 0.3L long (L is the width of the conical ring) are associated with pressure
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(a)

(c)

(b)

(d )

Figure 13. The dual wave configurations associated with the hysteresis loop B, M0 = 3.95,
(a) and (b), and the hysteresis loop C, M0 = 3.45, (c) and (d), of figure 11.
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Figure 14. The pressure distribution along the cone surface for (a) the wave configurations
of loops A and C, M0 = 3.45, and (b) loops A and B, M0 = 4.0, of figure 11. Solid line –
oMR configuration with a long Mach stem; dash-dotted line – oMR configuration with a
short Mach stem; dashed line – oRR configuration.

peaks which are about 40–50 times larger than the ambient pressure. In the case of
oMR wave configurations having Mach stems which are only about 0.1L long, the
pressure distributions are similar to those of oRR wave configurations. The reason
for the difference in the pressure distributions is the fact that the Mach stem of the
oMR wave configurations having long Mach stems are positioned further upstream
than the Mach stem of the oMR wave configurations having short Mach stems. As
a result the reflected shock waves of the lower Mach reflections of the oMR wave
configurations reflect from the surface of the curvilinear cone, either as an RR or an
MR. This in turn results in the pressure peaks. The pressure peak is higher when the
reflection is an RR.

5. General remarks
The numerical simulations of cases 2 and 3 presented above, which resulted in

different stationary solutions for identical flow conditions, must be accounted for
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M0

(a) t = 0 (b) t = 0.2

(c) t = 0.4 (d ) t = 1.2

Figure 15. The evolution of a stationary flow with a uniform flow with Mach number
M0 = 4.0 as the initial condition for the calculations.

when conducting numerical simulations, as the lack of information about these
solutions could lead to paradoxes.

The evolution of a stationary flow for an identical flow Mach number, M0 = 4.0,
but three different ways of initializing the numerical code, is shown in figures 15
and 16. A uniform flow with a Mach number M0 = 4.0, was the initial condition for
the calculations shown in figure 15. A normal discontinuity of pressure and velocity,
which induces behind it a uniform supersonic flow with a flow Mach number, M0 = 4.0,
was the initial condition for the calculations shown in figure 16. The difference between
the two sequences shown in figure 16 is the initial pressure, p1, of the quiescent gas
downstream of the front of the discontinuity. As can be seen in figures 15 and 16
the three calculations result in different stationary solutions, that represent the three
possible wave configurations mentioned earlier, namely an oRR (in figure 15), and
two oMRs, one with a long Mach stem and the other with a short Mach stem (in
figure 16). While a multiplicity of solutions for a straight cone or for a wedge are
predicted theoretically for a regular/irregular interaction, the multiplicity of solutions
with different oMR wave configurations is, to the best of the authors’ knowledge, not
explained by any known theory.

6. Possible applications
It is important to note here that in spite of the fact that our motivation in studying

the hysteresis process in the RR ↔ MR transition was purely academic, it turned out
recently that the existence of the hysteresis processes might have an important impact
on the performance of air intakes in supersonic and hypersonic flights. Consequently,
there is a clear aeronautical and aerospace engineering interest in better understanding
the hysteresis phenomenon investigated here.

Since the geometry investigated resembles the geometry of supersonic intakes, the
findings regarding the existence of hysteresis processes, in general, and overlapping
hysteresis processes, in particular, presented earlier can be relevant to the performances
of the air intakes of vehicles flying at supersonic and hypersonic speeds. It should be
noted here that by the term ‘resemble’ we mean that actual air intakes have geometries
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M0

t = 0.2

(a)

t = 0.4

t = 0.6

t = 1.2

M0

t = 0.2

(b)

t = 0.4

t = 0.6

t = 1.2

Figure 16. The evolution of a stationary flow with a normal shock wave, which induces behind
it a uniform flow with Mach number M0 = 4.0 as the initial condition for the calculations.
(a) p0/p1 = 5, and (b) p0/p1 = 10.

involving concave and convex axi-symmetric cylindrical and conical surfaces, which
in supersonic flight would generate curvilinear shock waves. The angle of interaction
of these curvilinear shock waves, which depends on the flight Mach number, might
change in a range that will result in a hysteresis of the flow field associated with the
air intake. This was pointed out by Onofri & Nasuti (2001) who were the first to
relate the hysteresis phenomenon in the RR ↔ MR transition to the performance of
air intakes. However, their numerical study was performed using a two-dimensional
geometry, which resembles actual supersonic air intakes less than our axisymmetric
geometry.

The possible dependence of the flow pattern, in general, and the pressure
distribution, in particular, inside an air intake on the preceding variations in the
speed of flight of a supersonic/hypersonic aircraft should be accounted for in the
designing of intakes and flight conditions for supersonic and hypersonic vehicles.
This is especially due to the fact that different flow fields would result in different
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Figure 17. Schematic illustration of the possibility of obtaining three different wave
configurations ((1) an oMR with a long Mach stem, (2) an oMR with a short Mach stem
and (3) an oRR) inside a supersonic intake at the same flight Mach number, Mf =3.8. The
different wave configurations yield different flow fields which in turn could influence the entire
performance.

flow conditions that can significantly affect the combustion processes and the overall
performances of the vehicle.

Consider figure 17, the upper part of which is a reproduction of figure 8. The
overlap of the hysteresis loops A and B suggests, as mentioned earlier, that there
is a flow Mach number range for which three different wave configurations are
possible. For example for the flight Mach number Mf = 3.8 one can obtain an oMR
wave configuration with a long Mach stem, or an oMR wave configuration with a
short Mach stem, or an oRR wave configuration. These three wave configurations
that are shown in figure 9 are marked in figure 17 as (1), (2) and (3), respectively.
The flow Mach numbers at which the transitions from an oMR wave configuration
with a long Mach stem to an oMR wave configuration with a short Mach stem
and from an oMR wave configuration with a short Mach stem to an oRR wave
configuration take place are labelled Mtr1

and Mtr2
, respectively. The lower part of

figure 17 shows possible flight Mach number histories of a supersonic vehicle whose
air intake is identical in geometry to that shown in figure 1 and the leading edge of
the curvilinear cone is located at X = −0.2. At t = 0 the vehicle starts accelerating
to reach a flight Mach number of Mf = 3.8. Having reached this speed the wave
configuration in its supersonic intake will be an oMR wave configuration with a long
Mach stem (figure 9c). If at this stage the vehicle accelerates to a speed in the range
Mtr1

<Mf < Mtr2
and then returns to Mf = 3.8 then the wave configuration in the
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supersonic air intake will change to an oMR with a short Mach stem (figure 9d). If,
however, the vehicle accelerates to a speed in the range Mf > Mtr2

and then returns
to Mf = 3.8, then the wave configuration in the supersonic air intake will change to
an oRR (figure 9a). Consequently, as shown in this example, three different wave
configurations might be encountered in the supersonic intake for identical supersonic
flight speeds, i.e. Mf = 3.8. As shown earlier, these different wave configurations
are associated with different pressure distributions and hence different dynamic and
thermodynamic properties. The different flow fields would result in different flow
conditions that could significantly affect the combustion process inside the air intake
and the overall performance of the vehicle.

It should be noted here once again that these three possible wave configurations
are all derived from the solution of the Euler equations. Hence, they are all
inviscid. Recalling that Ben-Dor et al. (2001) also obtained experimentally a
viscous-dependent wave configuration, which is also possible for the geometrical
configuration investigated here, results in a unique situation in which four different
wave configuration are, in fact, possible for the same flow conditions.

Finally, it should be mentioned that the present physical model is limited to perfect
gas behaviour. However, at supersonic/hypersonic flights non-stationary and real
gas effects, inside the air intakes, will most probably affect the resulting flow field.
Consequently, the question of whether hysteresis processes will occur in actual cases
is yet to be answered by simulating geometries of actual air intakes and accounting
for both viscous and real gas effects. The findings of the present investigation clearly
indicate that there is a possibility of hysteresis processes inside actual air intakes and
that this should be accounted for when designing air intakes for supersonic/hypersonic
flights.

7. Conclusions
A flow-Mach-number-induced hysteresis phenomenon, in the shock-on-shock

interaction of conical shock waves was investigated numerically using a W-
modification of the non-stationary Godunov method with second-order accuracy
both in space and time. The interaction resulted in a multiplicity of hysteresis loops.
The range of the hysteresis loops was found to depend on the location of the nose of
the curvilinear cone with respect to the conical ring. Furthermore, it was found that
for certain locations there were flow Mach number ranges in which three different
inviscid wave configurations could be obtained for identical flow conditions. Since an
additional viscous-dependent wave configuration is also possible for the investigated
phenomenon, it can be concluded that there are flow Mach number ranges in which
four different wave configurations, three inviscid and one viscous, can be obtained
for identical flow conditions. As already mentioned to the best of our knowledge, a
situation in which four different wave configurations are possible for the same flow
conditions has never been reported before.

The different wave configurations for identical flow Mach numbers were associated
with different pressure distributions. In cases where the Mach stem of the oMR wave
configuration was long enough, pressure peaks that exceeded the ambient pressure
by 40–50 times were obtained.

It is important to note here that the specific geometry of the curvilinear cone that
was investigated in the course of this study was chosen in order to promote the
RR ↔ MR transition. Consequently, the overall hysteresis loops for the three cases
investigated, i.e. those shown in figures 6, 8 and 11, are specific to the chosen geometry



Flow-Mach-number-induced hysteresis 353

and not general. However, it is hypothesized here that the above described complicated
hysteresis processes could be also encountered in other cases of supersonic flows over
similar geometries, which will also generate interacting conical shock waves. Such
geometries are those of air intakes of supersonic vehicles. It goes without saying that
the flow Mach numbers at which transitions between the various wave configurations
will occur for other geometries will be different from those found in the course of
this study. The importance of the present study lies in the fact that it identifies a
phenomenon in which up to four different steady flow fields could be established for
identical flow conditions. In addition, in view of the fact that many similar flows are
actually non-stationary, it is possible that the above-described situation of multiplicity
of solutions is even more complex.

Since the geometry investigated resembles the geometry of supersonic air intakes,
the findings regarding the hysteresis processes that are reported in the present study
can be relevant to the flight performance at high supersonic speeds. The possible
dependence of the flow pattern, in general, and the pressure distribution, in particular,
inside the air intake on the preceding manoeuvres of an aircraft should be taken into
account in the designing of air intakes and flight conditions for hypersonic vehicles.

This study complements an earlier study by Ben-Dor et al. (2001) in which an angle-
of-incidence-induced hysteresis was investigated both numerically and experimentally
over a similar geometry.

This study was conducted under the auspices of the Dr Morton and Toby Mower
Professorial Chair of Shock Wave Studies.
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